
Unsupervised Learning of a Kinematic Arm

Model

Heiko Hoffmann and Ralf Möller

Cognitive Robotics, Max Planck Institute for Psychological Research,
Amalienstr. 33, D-80799 Munich, Germany

hoffmann@psy.mpg.de, moeller@psy.mpg.de

Abstract. An abstract recurrent neural network trained by an unsuper-
vised method is applied to the kinematic control of a robot arm. The net-
work is a novel extension of the Neural Gas vector quantization method
to local principal component analysis. It represents the manifold of the
training data by a collection of local linear models. In the kinematic con-
trol task, the network learns the relationship between the 6 joint angles
of a simulated robot arm, the corresponding 3 end-effector coordinates,
and an additional collision variable. After training, the learned approxi-
mation of the 10-dimensional manifold of the training data can be used
to compute both the forward and inverse kinematics of the arm. The
inverse kinematic relationship can be recalled even though it is not a
function, but a one-to-many mapping.

1 Introduction

A basic task in controlling a robot arm is to establish a relation between joint
angles and end-effector coordinates. A model that determines the end-effector co-
ordinates from the joint angles is called a forward model. On the other hand, the
transformation from end-effector coordinates to joint angles is established by an
inverse model. While forward models are one-to-one or many-to-one mappings,
inverse models can be one-to-many. Feedforward neural networks are function
approximators and therefore fail to learn a one-to-many mapping [3].

Steinkühler and Cruse [10] therefore suggested to use a recurrent neural net-
work (RNN) to solve the redundant problem. In a RNN, all variables are com-
bined in a single pattern, and there is no distinction between input and output
at training time. Output values are retrieved by completion of a partially de-
fined pattern, the input. Steinkühler and Cruse used a hard-wired RNN with
predefined connections and weights. Here, we present an abstract RNN model-
ing the manifold of stored patterns by unsupervised learning from the training
examples.

We apply this network for learning and recall to the kinematic model of a
6 degree-of-freedom robot arm. Each collected training pattern contains 6 joint
angles, 3 end-effector coordinates, and the collision state. In the training phase,
a local principal component analysis (local PCA) method is used to determine



a model of the manifold of the training data. In geometrical terms, it is ap-
proximated by a collection of hyper-ellipsoids. It is assumed that the training
patterns lie on a lower-dimensional manifold embedded in the pattern space. In
the application phase, a pattern completion is performed. The input part of a
test pattern defines the offset of a constraint in the pattern space. The output is
determined from the intersection of the constraint space and the approximated
data manifold. The presented network has better generalization abilities than a
Hopfield network [2], which only restores isolated patterns under the condition
that they are uncorrelated or orthogonal.

Section 2 describes training and recall in the abstract recurrent neural net-
work. Section 3 explains the application of the model to a kinematic arm model
and presents the results, which are discussed in Sec. 4.

2 Unsupervised learning and recall in an abstract RNN

2.1 Training

The training algorithm is an extension of Neural Gas to local PCA. Neural Gas
[4] is a robust vector quantization technique with soft competition between the
units. It is an online method, where the model is updated after each presented
pattern. A network contains N units, with unit index k = 1, ..., N . In Neural
Gas, each unit contains a center vector ck. For each presentation of a training
pattern x, all centers are ranked from 0 to N − 1 in ascending order of their
distance dk (Euclidean in Neural Gas) to x. The rank rk of a center determines
its individual weight αk = ε · exp(−rk/%). The centers are updated with

ck ← ck + αk · (x− ck) . (1)

The learning rate ε and the neighborhood range % decrease exponentially
during training, so that the algorithm converges and descends from soft to hard
competition. The unit centers are initialized by randomly chosen examples from
the training set.

We extend the units to hyper-ellipsoids defined by a center ck, m principal
axes wki with half axis length

√
λki, and a spherical complement with radius

√

λ∗k in the n−m minor dimensions. The wki and λki are the estimates of the
eigenvectors and eigenvalues of the local covariance matrix of the training data.
The distance measure is extended from a Euclidean distance to a normalized
Mahalanobis distance plus reconstruction error [1],

dk(x) = y
T
kΛ

−1
k yk +

1

λ∗k
(ξT

k ξk − yT
k yk) + ln detΛk + (n−m) lnλ∗k . (2)

ξk = x−ck is the deviation between the input vector x and the center of the
unit ck, and the vector yk =WT

k ξk contains the coordinates of ξk in the system
of the first m vectors wki, which are the columns of Wk. The eigenvalues are



comprised in the diagonal matrix Λk. The second term in (2) is the reconstruc-
tion error divided by λ∗k. The logarithmic terms take care of the normalization.
λ∗k depends on the estimate of the residual variance σ2

k which is updated accord-
ing to

σ2
k ← σ2

k + αk · (ξT
k ξk − yT

k yk − σ2
k) . (3)

The residual variance is evenly distributed among all n−m minor dimensions
by

λ∗k =
σ2

k

n−m
. (4)

To adjust the principal axes and their lengths, one step of an online PCA
method is performed:

Wk,Λk ← PCA{Wk,Λk, ξk, αk} . (5)

For simplicity, we omit the index k in the rest of this section. We use a
PCA algorithm similar to RRLSA [6]. RRLSA is a sequential network of single-
neuron principal component analyzers based on deflation of the input vector [9,
8]. While the wi are normalized to unit length, internally the algorithm works
with unnormalized w̃i,

w̃i ← w̃i + α · (ξ(i)yi − w̃i), i = 1, . . . ,m , (6)

where a neuron i (with the weight vector w̃i) sees the deflated input vector

ξ(i),

ξ(i+1) = ξ(i) −wiyi with ξ(1) = ξ . (7)

After each online step, the eigenvalue and eigenvector estimates are obtained
from

λi = ‖w̃i‖, wi =
w̃i

‖w̃i‖
, i = 1, . . . ,m . (8)

The eigenvector estimates are initialized with random orthogonal vectors.
The eigenvalues λi and the variance σ2 are initialized with the value 1.

Since the orthogonality ofW is not preserved for each step, the algorithm has
to be combined with an orthogonalization method, here we used Gram-Schmidt
[5]. Orthogonality is essential for the computation of the distance (2).

2.2 Recall

After learning, the manifold of training patterns is represented by a collection
of hyper-ellipsoids with centers ck, direction vectors wki, lengths

√
λki of the

principal axes, and the complement λ∗k. An input to the network (one part of
the components of p ∈ IRn) defines the offset of a constraint space x(η) spanning
over all possible output values:



x(η) =Mη + p . (9)

η is a collection of q free parameters (q being the dimension of the network
output) in the subspace. M is a n× q matrix.

Recall of the complete pattern takes place in two steps. First, for each unit k
determine the point x̂k ∈ IRn on the constraint subspace with smallest distance
(2) to ck. Second, choose the unit k

∗ resulting in the smallest distance dk∗(x̂k∗).
The corresponding x̂k∗ yields the desired output values (see Fig. 1 A).

The distance dk as a function of the free parameters η can be written as:

dk(x(η)) = (Mη + πk)
T (WkΛ

−1
k WT

k +
1

λ∗k
{I−WkW

T
k })(Mη + πk) (10)

+ ln detΛk + (n−m) lnλ∗k ,

with πk = p− ck. We derive with respect to η:

∂dk

∂η
= 2MTDkMη + 2MTDkπk (11)

with

Dk =WkΛ
−1
k WT

k +
1

λ∗k
{I−WkW

T
k } . (12)

Setting the derivative equal to zero yields,

η̂k = −(MTDkM)−1MTDk(p− ck) . (13)

The function d is convex. Therefore, η̂k is closest to the center. Thus, x̂k =
Mη̂k + p. The presented algorithm always gives a unique output for a given
input. This approach has the advantage over a recall mechanism using gradient
descent relaxation that it does only recall the global minimum on the constraint.
Local minima on a constraint may not relate to the data manifold.

Equation (9) defines a general linear contraint. In the special case of con-
straint planes parallel to the coordinate axes, arbitrary components can be as-
signed the role of input and output variables. This is exploited for the application
to a kinematic robot arm control task, where the same network is used as an
inverse model and as a forward model without relearning, as described in the
following.

3 Kinematic Arm Model

A robot arm with 6 rotatory degrees of freedom is simulated. It corresponds
to a real robot arm in our lab. Figure 1 B shows the setup of the model. An
arm model with the geometry of the arm and its environment can determine
a collision between different parts of the arm and between the arm and the
environment.



y

z

x

Origin

x

y
A B

equi-distance curve

resulting point

constraint

Fig. 1. A. Pattern recall. The input x defines the offset of a constraint space from
zero. In this space the point closest to a unit center is chosen. Its y-value is the desired
output. The ellipses describe the points having same distance dk to unit k. B. Simulated
robot arm. Location of the origin and axes of the end-effector coordinate system are
shown

The training set was generated by randomly choosing 50 000 joint angle sets.
Angles were chosen from a uniform interval of ±120 degrees centered at a pre-
defined zero position. For each joint angle set, the end-effector position was
determined from the arm model. It was also calculated if the angle set resulted
in a collision. Thus, each training pattern is 10-dimensional and contains 6 joint
angles, 3 end-effector coordinates, and one collision variable. Only training pat-
terns with an end-effector position inside a workspace of 500 × 500 × 500mm
above the table were included in the training set. Further more, the patterns
were chosen such that half of the set were collision trials and half no-collision
trials. All values were scaled such that they fit in a 10-dimensional cube with side
length 1. Collision was encoded by a binary value 0 or 1. That means the subsets
of collision patterns and no-collision patterns had zero variance in the collision
variable, which in the training could lead to undefined values of the distance
measure. Therefore, random noise was added to all pattern values. This noise
was uniformly distributed in the interval [-0.0001,0.0001] and added whenever a
pattern was drawn from the pattern set.

Three networks with different number of units (N = 50, 100, 200) were trained
and tested. All networks were trained using the parameter set T = 400 000
(the number of training steps), m = 6, %(0) = 10, %(T ) = 0.0001, ε(0) = 0.5,
ε(T ) = 0.001. The number of principal eigenvectors m was chosen after inspect-
ing the eigenvalues of a test run without dimension reduction (m = 10). Only the
first 6 eigenvalues noticeably differed from zero. The training of a network with
200 units took about 33 minutes on an Athlon XP 2200+ with 1 GB RAM. After
learning, the number of training patterns were approximately evenly assigned to
the N different units of a network. For N = 200, the number of assigned patterns
to a unit ranged between 32 and 403, with a mean of 250 and a standard devia-



tion of 73. The distribution was nearly Gaussian. Table 1 shows the performance
of the network with N = 200.

Table 1. Position and collision errors for an abstract RNN with N = 200 units, com-
pared with a multilayer perceptron (MLP). Results are shown for different directions
of recall, forward and inverse. The inverse model takes the desired collision state as
an additional input variable (third column). Position errors are averaged over all test
patterns, and are given with standard deviations. In the inverse case, the collision error
is the percentage of trials deviating from the collision input value. In the forward case,
it is the erroneous number of collision state predictions

Network Direction Input Position error (mm) Collision error (%)

RNN Inverse No collision 27 ± 15 5.1
RNN Inverse Collision 23 ± 13 7.7
RNN Forward - 44 ± 27 11.4
MLP Inverse No collision 310 ± 111 30.1
MLP Forward - 93 ± 48 13.4

For the inverse direction, the constraint space specified the end-effector co-
ordinates and the collision state, and the network had to find the joint angles.
Position errors were calculated between the desired end-effector coordinates and
the ones obtained by feeding the joint angles produced by the network into the
analytical geometric arm model. Collision errors were obtained in a similar way.
Desired end-effector coordinates were taken from a 11× 11× 11 grid inside the
working space.

In the forward direction, the 6 joint angles were constrained, and the network
had to find the end-effector coordinates and the collision state. The position error
and collision prediction error were computed by directly comparing the network
output with the result from the geometrical model. The test pattern set used
here was randomly generated in the same way as the training set. It contained
1331 patterns (the same number as for the inverse direction).

Table 2 shows the dependence of the network performance on the number of
units. Performance increases with increasing network size. Obviously, the mani-
fold is better approximated the more units are used.

The distribution of the position error in the space of test pattern can be seen
in Fig. 2. This data is taken from the inverse direction test with no-collision
as input. Higher errors can be seen at the border of the workspace (e.g. right
bottom corner in both images). The error flow field is not continuous. Different
regions are visible.

The abstract RNN results were compared with the performance of a mul-
tilayer perceptron (MLP). We used a simple structure with one hidden layer
containing 200 neurons (smaller or higher numbers did not improve the perfor-
mance) and trained 2000 epochs of resilient propagation [7]. Training and test
sets were the same as for our network. As can be seen in Tab. 1, the MLP cannot



Table 2. Performance of an abstract RNN for different number of units

Direction Input Error N = 50 N = 100 N = 200

Inverse No collision Position (mm) 48 38 27
Inverse No collision Collision (%) 4.8 4.9 5.1
Inverse Collision Position (mm) 47 35 23
Inverse Collision Collision (%) 8.2 9.1 7.7
Forward - Position (mm) 74 56 44
Forward - Collision (%) 16.3 13.7 11.4

cope with the redundant inverse problem, and performs worse on the forward
problem.

100 200 300 400 500 600 700 800
−300

−200

−100

0

100

200

300

[mm]
z

x  [mm]

100 200 300 400 500 600 700 800
−600

−500

−400

−300

−200

−100

0

x  [mm]

y

[mm]

Fig. 2. The position errors of the inverse model with input ‘collision’ (here N = 200).
Left: horizontal plane (approximately 70mm above the table). Right : vertical plane
through the origin (z = 0)

4 Discussion

We presented an abstract recurrent neural network model with unsupervised
learning. The model is applied to a kinematic arm control task and could learn
the direct and the inverse kinematics with one and the same network, coping
with the redundancy of the inverse direction. In contrast to Steinkühler and
Cruse [10], the network is not restricted to learning geometric relationships, but
can include additional variables such as a collision state.

The discrete collision variable splits the training data into two parallel hyper-
planes, one including all collision trials and the other all no-collision trials. The
distance (2) between the two hyper-planes is much bigger than any other distance



between data points inside one hyper-plane. As a result, most of the hyper-
ellipsoids stay within one of the hyper-planes (for N = 200 all but 9 units had
mid-points and eigenvectors within one of the hyper-planes).

The discontinuity of the error (as seen in Fig. 2) results from the change
to the next best fitting unit (the closest hyper-ellipsoid). Different regions in
the error flow field correspond to different hyper-ellipsoids. As can be seen from
(9) and (13), the relation between input and output is locally linear. The local
linear models do not necessarily join continuously. So far, no better solution was
found to avoid these discontinuities. The vortex like flow fields in Fig. 2 probably
result from the error arising from approximating a trigonometric function with
a locally linear model.

Recent work focuses on learning a visuo-motor model using a real robot arm.
There, the image of an object and the joint angles required to grasp the object
are associated.

5 Acknowledgments

The authors would like to thank Wolfram Schenck for providing an implementa-
tion of the MLP network used in this work, Henryk Milewski for implementing
the geometric arm model, and Bruno Lara for comments on the manuscript.

References

1. Hinton, G. E., Dayan, P., Revow, M.: Modeling the Manifolds of Images of Hand-
written Digits. IEEE Transactions on Neural Networks 8 (1997) 65–74

2. Hopfield, J. J.: Neural Networks and Physical Systems with Emergent Collective
Computational Abilities. Proceedings of the National Academy of Sciences, USA
79 (1982) 2554–2558

3. Jordan, M. I., Rumelhart, D. E.: Forward Models: Supervised Learning with a Distal
Teacher. Cognitive Science 16 (1992) 307–354

4. Martinetz, T. M., Berkovich, S. G., Schulten, K. J.: “Neural-Gas” Network for Vec-
tor Quantization and its Application to Time-Series Prediction. IEEE Transactions
on Neural Networks 4 (1993) 558–569

5. Möller, R.: Interlocking of Learning and Orthonormalization in RRLSA. Neurocom-
puting 49 (2002) 429–433

6. Ouyang, S., Bao, Z., Liao, G.-S.: Robust Recursive Least Squares Learning Algo-
rithm for Principal Component Analysis. IEEE Transactions on Neural Networks
11 (2000) 215–221

7. Riedmiller, M., Braun, H.: A Direct Adaptive Method for Faster Backpropagation
Learning: The RPROP Algorithm. Proceedings of the IEEE International Confer-
ence on Neural Networks (1993) 586–591

8. Rubner, J., Tavan, P.: A Self-Organizing Network for Principal-Component Analy-
sis. Europhys. Lett. 10 (1989) 693–698

9. Sanger, T. D.: Optimal Unsupervised Learning in a Single-Layer Linear Feedforward
Neural Network. Neural Networks 2 (1989) 459–473

10. Steinkühler, U., Cruse, H.: A Holistic Model for an Internal Representation to Con-
trol the Movement of a Manipulator with Redundant Degrees of Freedom. Biological
Cybernetics 79 (1998) 457–466


