
APS/PRE

Impact of Network Topology on Self-Organized Criticality

Heiko Hoffmann∗

HRL Laboratories, LLC, Malibu, CA 90265, USA

(Dated: February 22, 2018)

Abstract

The general mechanisms behind self-organized criticality (SOC) are still unknown. Several mi-

croscopic and mean-field theory approaches have been suggested, but they do not explain the de-

pendence of the exponents on the underlying network topology of the SOC system. Here, we first

report the phenomena that in the Bak-Tang-Wiesenfeld (BTW) model, sites inside an avalanche

area largely return to their original state after the passing of an avalanche, forming, effectively,

critically arranged clusters of sites. Then, we hypothesize that SOC relies on the formation process

of these clusters, and present a model of such formation. For low-dimensional networks, we show

theoretically and in simulation that the exponent of the cluster-size distribution is proportional to

the ratio of the fractal dimension of the cluster boundary and the dimensionality of the network.

For the BTW model, in our simulations, the exponent of the avalanche-area distribution matched

approximately our prediction based on this ratio for two-dimensional networks, but deviated for

higher dimensions. We hypothesize a transition from cluster-formation to the mean-field theory

process with increasing dimensionality. This work sheds light onto the mechanisms behind SOC,

particularly, the impact of the network topology.

∗ hhoffmann@hrl.com
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I. INTRODUCTION

Complex systems of interacting components are widespread in nature and man-made

structures - see, e.g., tectonic plates and power grids. In some of those systems, scale-

invariant fluctuations have been observed that occur spontaneously without the need to

carefully tune a control parameter like, e.g., the temperature [1–6]. Examples of these

fluctuations are earthquakes [6], avalanches in a sand pile [1], power outages [4], or avalanches

of neural spikes [2]. Since these systems apparently self-organize to generate scale-invariant

fluctuations, this phenomenon has been termed self-organized criticality (SOC).

Typically, SOC occurs in systems with threshold dynamics and an external driving force,

e.g., the addition of new sand grains [5]. However, the precise characteristics that guar-

antee SOC are still unknown. The occurrence of SOC has practical implications because

scale-invariant fluctuations imply power-law distributed event sizes, which means that ex-

traordinarily large events occur orders of magnitude more likely than equally-sized events

from a normal distribution - important when you consider, e.g., power outages.

The most common model of SOC and the first to introduce the concept has been the

Bak-Tang-Wiesenfeld (BTW) model [1], which is a cellular automaton on a lattice and a

simplified version of a sandpile - see Section II. The avalanches from this model are power-

law distributed. Bak et al. already showed a dependence of the exponent of the power-law

on the dimensionality of the lattice, but a theoretical explanation of this dependence is still

missing.

One of the most common theoretical explanations of the power-law distribution in the

BTW model is the mean-field theory [5, 7–10]. This theory predicts, in agreement with

experiments, the slope of the power-law to be 1.5 for lattices in 6 or more dimensions.

For lower dimensions, however, particularly, < 5, the experimental results deviate from the

theoretical value [10].

Here, we present a new hypothesis for the mechanism of SOC and an explanation of the

exponents of the BTW model in lower dimensions. After introducing the BTW model, we

first report a discovery of a new property of avalanches in the model: in lower dimensions,

after the passing of an avalanche, the sites or nodes in the interior of the avalanche resume

their original state before the avalanche. These nodes form what we call a critical cluster.

Next, we introduce a simplified model describing the formation process of these critical
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clusters. This formation process converges to yield approximately power-law distributed

cluster sizes. In theory, we establish a link between the fractal dimension of the boundary

of the clusters and the exponent of their size distribution. Then, we verify this link in

simulation. Lastly, we evaluate the same fractal dimension for the critical clusters in the

BTW model, and find that we can predict the exponent of the cluster-size distribution

within 3% for the 2D square lattice and random geometric graph. In higher dimensions, the

predictions diverge. Apparently, when increasing the dimensionality, we observe a transition

between cluster formation and mean-field theory.

II. BTW MODEL

The BTW model describes the flow of sand grains on a network [1]. This model has been

originally defined on square and cubic lattices, but it can be generalized to arbitrary graphs

[11]. Here, we consider this generalized version, also referred to as Abelian sandpile model.

Assume a graph of nodes i that each contain xi amount of grains. The Abelian sandpile

model consists of a slow and a fast process. The slow process adds one grain to a random

node i, xi → xi+1 (slow external driving force). The fast process computes the propagation

of an avalanche, as described in the following. If a node is above threshold xi > zi, where zi

is the degree of node i, the node topples and sheds one grain to each of its zi neighbors,

xi(t+ 1) = xi(t)− zi (1)

∀j ∈ Ni : xj(t+ 1) = xj(t) + 1 , (2)

whereNi is the set of nodes that share an edge with node i (here, we consider only undirected

graphs). This toppling may result in a neighbor to be above threshold, making this neighbor

to also shed its grains according to the above equations. This repeated shedding can result

in a cascade of events, an avalanche of grain topplings. Once an avalanche is complete,

i.e., all nodes are at or below threshold, the slow process proceeds by adding another grain.

After an initial phase of self-organization (cooling), avalanches occur with sizes that follow

a power law distribution.
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III. CRITICAL CLUSTERS

In the BTW model, during an avalanche, each node may topple multiple times. At the

end of this process, we found that, interestingly, most nodes inside the avalanche area assume

the same state as they had before the avalanche (Fig. 1). Changes to the states typically

happen only at the boundary of an avalanche, while their interior reverts back to the state

before the avalanche (even though all nodes inside an avalanche did topple at least once).

(a) (b)

(c) (d)

FIG. 1. The BTW model leaves most of the interior of an avalanche unchanged, two typical

avalanches (a) and (b) and the corresponding differences xt+1
i − xti, where xti is the state of node i

before and xt+1
i after the avalanche, (c) and (d).

In a simulation of the BTW model, we computed the fraction of nodes in an avalanche

that reverted back to their original state before the avalanche. We allowed for sufficient

cooling time to reach SOC (see also Section VII). For a square lattice with side length

L = 1024, 87.518± 0.005% of nodes regained their original state after one avalanche (mean

± std, n = 4). This number increased with the size of the lattice because for larger clusters

4



the boundary is smaller relative to the area. For example, for smaller lattices, we found the

fraction to be 60.6±0.1% for L = 50, 69.8±0.1% for L = 100, and 76.6±0.3% for L = 200.

We call the set of nodes in an avalanche that revert back to their original state a critical

cluster because, apparently, they are carefully arranged to allow the avalanche to happen

and still retain their property after the avalanche. Our critical cluster is different from a

cluster of path-connected critical nodes that are just below the toppling threshold; such a

cluster would also topple entirely but would change its state. Many nodes are actually near

their toppling threshold. Across a 2D lattice, as part of our analysis, we observed an uneven

distribution of state values, xi, with the following probabilities: p = 0.0738 ± 0.0001 for

x = 1, p = 0.1742±0.0002 for x = 2, p = 0.3065±0.0002 for x = 3, and p = 0.4455±0.0002

for x = 4 (mean ± std, n = 4), here, L = 1024 (see Discussion for the relevance of these

numbers).

The formation of critical clusters is dependent on the dimensionality of the lattice. We

simulated lattices of different dimensions with a side length L = [10242/d], where d is the

dimensionality. With increasing dimensionality, the fraction of unchanged nodes decreased:

cubic lattice: 43.57± 0.05%, 4D lattice: 1.967± 0.007%, 5D lattice: 0.0112± 0.0001%. The

fraction dropped to near zero for 5 dimensions. With 5 dimensions, the size distribution

of the unchanged clusters became exponential (Fig. 2), and the probability for unchanged

nodes dropped to almost zero for higher dimensions, 2 ∗ 10−5 ± 10−5% for a 6D lattice, not

forming any cluster of more than one node.

Due to the stability of the critical clusters, we hypothesize that they are a key element

in describing the dynamic equilibrium of SOC in lower dimensions. Apparently, there exists

a formation process controlling the size of these clusters. In the following, we present a

simplified model of cluster formation.

IV. CLUSTER-FORMATION MODEL

The cluster-formation model describes the self-organization of a cluster-size distribution.

It starts with a fixed number of clusters and then iterates merging and splitting of clusters,

preserving the total number of clusters. Figure 3a illustrates the process in 1D. The model

uses N nodes arranged along a line. These N nodes are divided into nc connected clusters

(all nodes in one cluster are path-connected). In one iteration step, one node at a cluster
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(a) (b)

FIG. 2. The size distribution of the unchanged nodes in an avalanche is a power-law (with exponen-

tial cutoff) for lattices of 2, 3, and 4 dimensions, but decays exponentially for 5 dimensions: log-log

plot (a), dotted lines show power-law fits and semilog plot (b), dotted line shows exponential fit.

boundary is chosen at random with uniform probability, and the corresponding cluster is

merged with its neighboring cluster. Given the resulting set of clusters, a new node is

chosen at random with uniform probability, and the corresponding cluster is split into two

components at the location of the node (if a cluster with only one node is chosen, the

selection is repeated).

For arbitrary graphs, we use same merge operation as above. To split a cluster, a node

from the entire graph is chosen randomly (uniform probability) such that the node has two

neighboring nodes within the same cluster. These two neighboring nodes then become the

starting directions for splitting the cluster. In a breadth-first search, we traverse the cluster

simultaneously in two directions, splitting it into two components, e.g., solid and dashed

arrows in Fig. 3b. This process ensures that a path-connected cluster is split into two

path-connected components.

To obtain the initial set of nc clusters, we start with a single cluster and apply the above

split operation until we reach nc clusters. Then, the merging and splitting operations are

repeated for a given number of iteration steps.

The split-merge iteration converges to a cluster-size distribution, which typically follows

a power-law for a range of cluster sizes (Fig. 3d). Figure 3c shows a snapshot of a cluster

distribution on a random geometric graph after convergence. The size distribution converges,

but the clusters themselves are still dynamic.
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FIG. 3. The cluster formation iterates merging and splitting of clusters (a). Splitting uses two

recursive breadth-first walks (solid and dashed arrows) starting from a random location (b). It-

erating merge and split results in a distribution of clusters as shown, e.g., in panel (c). This

iteration converges to a distribution of cluster sizes (d), here, for a cubic lattice with N = 4, 096

and nc = 400 (the formation process was repeated 500 times to obtain sufficient statistics).

V. THEORY OF CLUSTER FORMATION

The goal of our theoretical evaluation of the cluster-formation model is to derive a func-

tional relationship between the slope of the cluster-size distribution, n(s), and the underlying

network structure. Here, n(s) is the number of clusters of size s. In the formation process, we

consider the following four probabilities: the probability that a merge operation increases

the number of clusters of size s, p+m(s), the probability that a merge operation decreases

this number, p−m(s), the probability that a split operation increases this number, p+s (s), and

the probability that a split operation decreases this number, p−s (s). At equilibrium, these

probabilities need to fulfill the master equation,
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p+m(s)− p−m(s) + p+s (s)− p−s (s)
!

= 0 ∀s . (3)

For solving the master equation, our first approximation is that p+m(s) and p−s (s) cancel

each other out, i.e., p+m(s) = p−s (s). For larger cluster sizes, the appearance of a cluster due

to merging dominates the appearance due to splitting and the disappearance of a cluster

due to splitting dominates the disappearance due to merging: so, to balance the master

equation, p+m(s) has to compensate p−s (s) and has to be at least approximately equal for a

range of s values (in the one-dimensional case, this relationship turns out to be exact).

In the following, we consider only these two probabilities. The probability p−s (s) is the

probability that a uniformly chosen random node falls on a cluster of size s, i.e., p−s (s) = n(s)s
N

.

The probability for merging two clusters is an integral over the combinations of cluster

sizes x and s−x. For each of the two clusters, the probability to get selected is proportional

to the boundary of the cluster because the size of the boundary is the number of possible

merge points. So, we obtain

p+m(s) = c
s−1∑
1

n(x)xβn(s− x)(s− x)β ≈ c

∫ s−0.5

0.5

n(x)xβn(s− x)(s− x)βdx , (4)

where c is a constant and β = dB
d

with dB the fractal dimension of the boundary and d the

dimensionality of the space that the graph is embedded in. xβ is proportional to the number

of surface points when x is the number of points in the volume enclosed by the surface, e.g.,

for a sphere β = 2/3.

For the approximate solution of the master equation, we need to solve

p+m(s)
!

= p−s (s) =
n(s)s

N
. (5)

Here, we use the ansatz n(s) = as−τ with τ ≥ 1. For p+m(s), we obtain

p+m(s) = ca2
∫ s−0.5

0.5

x−τxβ(s− x)−τ (s− x)βdx = ca2
∫ s−0.5

0.5

x−τ+β(s− x)−τ+βdx . (6)

After substituting x = ys, the dependence on s is more visible,

p+m(s) = ca2
∫ 1− 1

2s

1
2s

y−τ+βs−τ+β(s−ys)−τ+βsdy = ca2s1−2τ+2β

∫ 1− 1
2s

1
2s

(y(1−y))−τ+βdy . (7)
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We want to show that the last integral is approximately constant as function of s for a

reasonable range of parameters. For convenience, we set α = −τ + β, which is not positive

because β ≤ 1. For sufficiently large s, the values near the limits of the integral contribute

the most, and we approximate

∫ 1− 1
2s

1
2s

(y(1− y))αdy ≈
∫ 1− 1

2s

1
2s

yα + (1− y)αdy (8)

=
1

1 + α

((
1− 1

2s

)1+α

−
(

1

2s

)1+α

−
(

1

2s

)1+α

+

(
1− 1

2s

)1+α
)
.

For sufficiently large s, the last expression can be further approximated as

∫ 1− 1
2s

1
2s

(y(1− y))αdy ≈ 2

1 + α

(
1− (2s)−1−α

)
. (9)

This expression is approximately constant for sufficiently large s if α > −1. That is, we

expect our analysis to hold if the slope τ of n(s) is sufficiently shallow.

Given these approximations, the probability for merging is

p+m(s) ≈ c′s1−2τ+2β , (10)

where c′ is a constant. Using this expression in the master equation (5), we obtain for the

exponents

1− 2τ + 2β = 1− τ (11)

and, solving for τ , our final result

τ = 2
dB
d

. (12)

The slope of the cluster-size distribution is directly related to the fractal dimension of the

cluster boundary. In the following, we test this relationship in simulation. The above

condition α > −1 is equivalent to dB
d
< 1. So, we expect the simulation results to differ

from our theoretical approximation when the dimensionality of the boundary approaches the

dimensionality of the embedding space, e.g., for Erdős-Renýı networks, dB = d. For one-

dimensional graphs, τ would be zero according to the above equation and our ansatz would

be violated. The 1D case, however, can be solved exactly, giving n(s) = n2
c/N exp(−snc/N).
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The fractal dimension, dB, is lower bounded by d−1. So, τ is lower bounded by τ = 2d−1
d

,

which increases with increasing dimensionality d. That is, in higher-dimensional spaces, the

exponent τ is larger, and clusters tend to be smaller.

VI. CLUSTER-FORMATION RESULTS

In simulation, we evaluated the cluster-formation model and compared size distributions

with the above theoretical result. We tested the relationship between slope τ and fractal

dimension dB/d on six networks: hexagonal lattice, cubic lattice, 4D lattice, random geo-

metric graph (RGG) in a plane, RGG inside a sphere, and Erdős-Renýı (ER) network, each

with N = 4, 096 nodes. The number of clusters had to be chosen carefully because it relates

to the normalization constant of the power-law distribution. We chose nc = 200 for the

hexagonal lattice, nc = 400 for the cubic one, nc = 1, 200 for the 4D one, nc = 200 for the

RGG in a plane, nc = 400 for the RGG in a sphere, and nc = 2, 500 for the ER network.

For the cluster formation, we iterated the above split and merge operations 20,000 times

to ensure convergence to a cluster-size distribution. Moreover, to obtain better cluster-size

statistics, this formation process was repeated 100 times, except 200 times for the hexagonal

lattice (because the overall number of resulting clusters was lower) and 500 times for the ER

network, which produced only a few larger clusters. For each network type, the resulting

clusters were combined into one distribution, from which the fractal dimensions, dB/d, were

computed from a power-law fit to the cluster boundary versus size relationship. The overall

process was repeated four times, each with a different random initialization of the random

networks.

Figures 4a and 4c show one power-law fit for each network type. Across the four runs,

the slopes varied only slightly: the dB/d values for the six networks were 0.5536±0.0016 for

hexagonal lattice, 0.7689± 0.0020 for cubic lattice, 0.8627± 0.0003 for 4D lattice, 0.5165±

0.0022 for RGG in plane, 0.6850 ± 0.0057 for RGG in sphere, and 0.9710 ± 0.0007 for ER

(mean ± std, n = 4). Based on these values, we computed the theoretical slope, τ , according

to (12). As a result, the theory matched well the simulated cluster-size distributions over

the same range for which dB/d was approximately constant (Fig. 4). As expected, our

theoretical approximation deviated from the ER-network result.
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FIG. 4. Results for the cluster-formation model, showing cluster boundary versus cluster size (a,

c) and the corresponding cluster-size distribution (b, d) for six different network types. Dotted

lines in (a, c) show power-law fits to the data and dotted lines in (b, d) theoretical values in the

same range of cluster-size values as for the power-law fits.

VII. BTW-MODEL RESULTS

On the BTW model, we evaluated the relationship between fractal dimension and slope

of the critical-cluster distribution and compared with the avalanche-area distribution. Here,

the fractal dimension was computed on the boundary of the critical clusters as defined in

Section III. We used six types of networks: 2D, 3D, 4D, and 5D lattices, RGG in plane, and

ER network, each having N nodes. The lattices and the RGG had open boundaries, i.e.,

grains passing the boundaries of the hypercubes were lost. For ER, we used dissipation to

remove grains; i.e., with a small probability (100/N), a toppling grain did not transfer to a

neighboring node and instead got removed.

We ran experiments on two network sizes, N = 5122 and N = 10242, rounding the side
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lengths of the lattices to the nearest integer, e.g., L = [10242/3] for a 3D lattice. Each

node was randomly initialized uniformly in the integer interval from 1 to z, where z is the

toppling threshold. In each simulation run, we iterated 10, 000, 000 additions of one grain.

For analysis, we omitted the first N iterations, allowing for sufficient cooling time to reach

the SOC state. To obtain errors, experiments were repeated four times (recomputing the

random graphs in each experiment).

Qualitatively, the results matched the ones for our cluster-formation model (Fig. 5). The

fractal-dimension ratio dB/d increased with dimension of the lattice, and the slope of the

avalanche-area distribution also increased with increasing dB/d. On the ER network, the

avalanche-area distribution was steeper compared to the RGG (Fig. 6).
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FIG. 5. BTW results: boundary of critical clusters versus their area (a) and slope of avalanche-area

distribution (b), here, L = [10242/d]. Dotted lines show power-law functions fitted to the data.

On the RGG, critical clusters formed as on the 2D square lattice. Different from the

square lattice, though, the slopes of the cluster and boundary size distributions were slightly

curved (Fig. 7). The slope of the probability distribution of cluster sizes curved in a way

that was consistent with our cluster-formation hypothesis: the slope was steeper for sizes

at which the boundary curve was steeper too. We evaluated the slope at a near straight

section (dotted lines in Fig. 7), using the same cluster-size interval for both boundary and

probability curves (the corresponding numerical values of the slopes are shown Tab. I and

II).

We evaluated the fractal dimensions dB/d (Tab. I) and the exponents of the distributions

for the critical-cluster size, τc, and the avalanche area, τa (Tab. II and III). The fractal
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FIG. 6. Avalanche area distribution for the random geometric graph and Erdős-Renýı network,

here, N = 10242. Dotted lines show power-law functions fitted to the data.

100 101 102 103 104 105

Cluster Size

100

101

102

103

104

105

C
lu

st
er

 B
ou

nd
ar

y

100 101 102 103 104 105

Cluster Size

10-6

10-5

10-4

10-3

10-2

10-1

Pr
ob

ab
ilit

y
(a) (b)

FIG. 7. BTW results on the random geometric graph: boundary of critical clusters versus their size

(a) and slope of the size distribution (b), here, N = 10242. Dotted lines show power-law functions

fitted to the data.

dimensions and critical-cluster slopes could be evaluated only for dimensions smaller than

5 (see Section III). The slopes increased with increasing dimensionality of the embedding

space of the network. Across different network sizes, the fractal dimensions varied less

compared to the slopes. For the 2D lattice and RGG, we also estimated slopes at infinite

lattice size, as described in [12], and applied the same method for the fractal dimensions.

The same extrapolation, however, does not hold for higher dimensions.

As a result, for dB/d at N = ∞, according to the cluster-formation hypothesis, the
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TABLE I. Fractal dimension dB/d for different networks (mean ± std, n = 4)

Network RGG 2D 3D 4D

N = 5122 0.6025± 0.0013 0.6171± 0.0003 0.7628± 0.0003 0.8919± 0.0010

N = 10242 0.6056± 0.0016 0.6177± 0.0003 0.7645± 0.0001 0.8991± 0.0003

N =∞ 0.6335± 0.0174 0.6233± 0.0035

expected slopes were 1.247± 0.007 and 1.27± 0.03 for the 2D lattice and RGG respectively.

In comparison, for the estimated slopes at infinity, we obtained for the 2D lattice τc = 1.286±

0.007 and τa = 1.301±0.006 ([12] reported τa = 1.33±0.01) and for RGG τc = 1.30±0.05 and

τa = 1.37 ± 0.03. These errors are only statistical and do not take into account systematic

errors when extrapolating to infinity due to the uncertain dependence on N .

TABLE II. Slopes, τc, of critical-cluster distribution for different networks (mean ± std, n = 4)

Network RGG 2D 3D 4D

N = 5122 0.978± 0.004 1.0609± 0.0006 1.219± 0.006 1.80± 0.02

N = 10242 1.010± 0.004 1.0835± 0.0006 1.224± 0.006 1.54± 0.02

N =∞ 1.30± 0.05 1.286± 0.007

TABLE III. Slopes, τa, of avalanche-area distribution for different networks (mean ± std, n = 4)

Network RGG 2D 3D 4D 5D ER

N = 5122 1.135± 0.003 1.1174± 0.0007 1.358± 0.003 1.515± 0.007 1.673± 0.018 1.495± 0.005

N = 10242 1.159± 0.002 1.1358± 0.0004 1.348± 0.003 1.496± 0.003 1.637± 0.002 1.485± 0.008

N =∞ 1.37± 0.03 1.301± 0.006

For the 2D networks, the estimates based on the cluster-formation hypothesis were close

to the experimental values of τc. For the cubic and 4D lattices, the theoretically expected

slopes would be larger than the mean-field value of 1.5, while they are known to be smaller

[10]. So apparently, our theory deviates with increasing dimensionality, and the slopes

instead approach the mean field value – see Discussion.
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VIII. DISCUSSION

We discovered a new phenomenon in the BTW model for low dimensions, and based

on this phenomenon suggested a mechanism behind the self-organized critical fluctuations.

This mechanism approximately predicted the exponent of the avalanche-area distribution

on networks embedded in two dimensions.

In low dimensions, critical clusters of nodes formed in the BTW model that enabled the

propagation of an avalanche and, at the same time, remained unchanged by the passing of

the avalanche. This formation is, apparently, restricted to networks embedded in 2, 3, or

4 dimensions. The critical clusters disappeared in 6 or more dimensions, and there was a

transition between 4 and 6 dimensions. This transition coincides with the lower boundary

of the dimensionality for which the mean-field theory correctly predicts the exponent of the

avalanche-size distribution [10].

The mean-field theory assumes or implies that the state values of the nodes are dis-

tributed with equal probability [5]. In contrast, in our experiments, we found that this

distribution is skewed towards values near the toppling threshold for lattices in lower di-

mensions. So, the inability of the mean-field theory to explain exponents in low dimensions

is to be expected. Moreover, interestingly, the probability of a node at critical value (0.446

in our experiments with a 2D lattice) is lower than the percolation threshold (about 0.593

for site percolation in a 2D lattice [13]). So, path-connected clusters of nodes at critical

value cannot explain the observed power-law distributed avalanches on their own. There

has to be another mechanisms or another configuration of critical clusters, which we appear

to have found.

We demonstrated that a simple split-and-merge operation of clusters of nodes in a network

can explain the dependence of the exponent on the dimensionality of the space that the

network is embedded in. In a higher-dimensional space, the magnitude of the exponent is

larger, i.e., clusters tend to be smaller. Qualitatively, the same behavior has been observed

in the BTW model [10].

Theoretically, analyzing our cluster-formation model, we found a direct relationship be-

tween the exponent of the cluster-size distribution and the ratio of the fractal dimension

of the cluster boundary and the dimensionality of the embedding space. This relationship

holds for sufficiently small ratios, dB/d < 0.9. Based on the same relationship, we could
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approximately predict the exponent of the distribution of critical clusters in the 2D BTW

model (1.247 vs. 1.286) and in the Abelian sandpile model on a random geometric graph

(1.27 vs 1.30). For the RGG, the difference between prediction and experiment was within

the error bounds, but for the 2D lattice, there remained a systematic difference that was not

explained by our statistical errors. This difference might arise from the uncertain extrapola-

tion to infinite lattice size or the over-simplification of our cluster-formation process. In the

BTW model, critical clusters may split into more than two parts or may form by combining

more than two clusters.

The exponents of the critical clusters were close to those for the avalanche area distri-

bution, but slightly different: in 2 to 3 dimensions, they were slightly smaller. The critical

clusters are a subset of an avalanche area, and the percentage of this subset increases with

increasing avalanche area (in lower dimensions), skewing the exponents to lower values.

Our predictions for the exponents of the BTW model do deviate from experimental results

for higher dimensional lattices. Based on the fractal dimensions, values above 1.5 would be

expected, but the mean-field theory bounds these values to 1.5. So, we hypothesize that with

increasing dimensionality, there is a transition between the cluster-formation process and the

critical branching process [5] of the mean-field theory (Fig. 8). According to this hypothesis,

a network embedded in an infinite dimensional space, e.g., an Erdős-Renýı network, will have

an exponent of 1.5, which matches our experimental value for ER.
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FIG. 8. Notional transition between cluster-formation dynamics and mean-field theory depending

on the fractal dimension of clusters.

Our study provided new insights into the mechanism of self-organized criticality. Partic-
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ularly, it sheds light into the dependence on the network topology on top of which an SOC

process is carried out. Moreover, we illustrated that likely no common mechanism exists that

explains all phenomena attributed to SOC. Even within one model, the Abelian sandpile,

we can, apparently, observe a transition between mechanisms when changing the network

topology. Finding concrete mechanisms behind SOC phenomena will help us to strengthen

the definition of SOC, understand where it occurs, and exploit it for application. More work

is required to solidify if cluster-formation is indeed the dominate process for BTW models

in low dimensions and to which other SOC phenomena it applies.

IX. ACKNOWLEDGMENTS

This material is based upon work supported by the Defense Advanced Research Projects

Agency (DARPA) and Space and Naval Warfare Systems Center Pacific (SSC Pacific) under

Contract No. N66001-15-C-4020. Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the author and do not necessarily reflect the

views of DARPA or SSC Pacific.

[1] P. Bak, C. Tang, and K. Wiesenfeld, Physical Review Letters 59, 381 (1987).

[2] J. M. Beggs and D. Plenz, Journal of Neuroscience 23, 11167 (2003).

[3] B. Gutenberg and C. F. Richter, Bulletin of the Seismological Society of America 46, 105

(1956).

[4] H. Hoffmann and D. W. Payton, Chaos, Solitons, and Fractals 67, 87 (2014).

[5] H. J. Jensen, Self-Organized Criticality: Emergent Complex Behavior in Physical and Biolog-

ical Systems, Cambridge Lecture Notes in Physics (Cambridge University Press, 1998).

[6] Z. Olami, H. J. S. Feder, and K. Christensen, Physical Review Letters 68, 1244 (1992).

[7] K. Christensen and Z. Olami, Physical Review E 48, 3361 (1993).

[8] S. A. Janowsky and C. A. Laberge, Journal of Physics A: Mathematical and General 26, L973

(1993).

[9] S. Zapperi, K. B. Lauritsen, and H. E. Stanley, Phys. Rev. Lett. 75, 4071 (1995).

[10] A. Chessa, E. Marinari, A. Vespignani, and S. Zapperi, Physical Review E 57, R6241 (1998).

17



[11] D. Dhar, Physical Review Letters 64, 1613 (1990).
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